Pseudoknot RNA Structures with Arc-Length $\ge 3$

نویسندگان

  • Emma Y. Jin
  • Christian M. Reidys
چکیده

In this paper we study k-noncrossing RNA structures with arc-length ≥ 3, i.e. RNA molecules in which for any i, the nucleotides labeled i and i + j (j = 1, 2) cannot form a bond and in which there are at most k − 1 mutually crossing arcs. Let S k,3 (n) denote their number. Based on a novel functional equation for the generating function P n≥0 S k,3 (n)z n , we derive for arbitrary k ≥ 3 exponential growth factors and for k = 3 the subexponential factor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$k$-noncrossing RNA structures with arc-length $\ge 3$

In this paper we enumerate k-noncrossing RNA pseudoknot structures with given minimum arc-and stack-length. That is, we study the numbers of RNA pseudoknot structures with arc-length ≥ 3, stack-length ≥ σ and in which there are at most k − 1 mutually crossing bonds, denoted by T [3] k,σ (n). In particular we prove that the numbers of 3, 4 and 5-noncrossing RNA structures with arc-length ≥ 3 and...

متن کامل

Pseudoknot RNA structures with arc - length ≥ 4 Hillary

In this paper we study k-noncrossing RNA structures with minimum arc-length 4 and at most k − 1 mutually crossing bonds. Let T k (n) denote the number of knoncrossing RNA structures with arc-length ≥ 4 over n vertices. We prove (a) a functional equation for the generating function ∑ n≥0 T [4] k (n)z n and (b) derive for k ≤ 9 the asymptotic formula T k (n) ∼ ck n +(k−1)/2) γ k . Furthermore we ...

متن کامل

Canonical RNA Pseudoknot Structures

In this paper, we study k-noncrossing, sigma-canonical RNA pseudoknot structures with minimum arc-length greater or equal to four. Let T(k, sigma)([4])(n) denote the number of these structures. We derive exact enumeration results by computing the generating function T(k, sigma)([4])(z) = summation operator(n) T(k, sigma)([4])(n)z(n) and derive the asymptotic formulas T(k, 3)([4])(n) approximate...

متن کامل

A zero one programming model for RNA structures with arclength ≥ 4

In this paper, we consider RNA structures with arc-length 4 . First, we represent these structures as matrix models and zero-one linearprogramming problems. Then, we obtain an optimal solution for this problemusing an implicit enumeration method. The optimal solution corresponds toan RNA structure with the maximum number of hydrogen bonds.

متن کامل

RNA-LEGO: Combinatorial Design of Pseudoknot RNA

In this paper we enumerate k-noncrossing RNA pseudoknot structures with given minimum stack-length. We show that the numbers of k-noncrossing structures without isolated base pairs are significantly smaller than the number of all k-noncrossing structures. In particular we prove that the number of 3and 4-noncrossing RNA structures with stack-length ≥ 2 is for large n given by 311.2470 4! n(n−1)....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007